

DATE: 1/14/2026

TIME: 9:45 a.m.

LOCATION: Executive Boardroom

COMMITTEE MEMBERS: Tyler Antrup, Chair | Courtney B. Scrubbs, Vice Chair | H. Davis Cole | Janet Howard | Kimberly A. Thomas, JD |

Strategic Planning Committee Meeting Agenda

PUBLIC MEETING

All meetings are open to the public, and we encourage your attendance.
Those interested can join in person or virtually.

Join In-Person: Executive Board Room, Second Floor
625 St. Joseph St., New Orleans, LA 70165

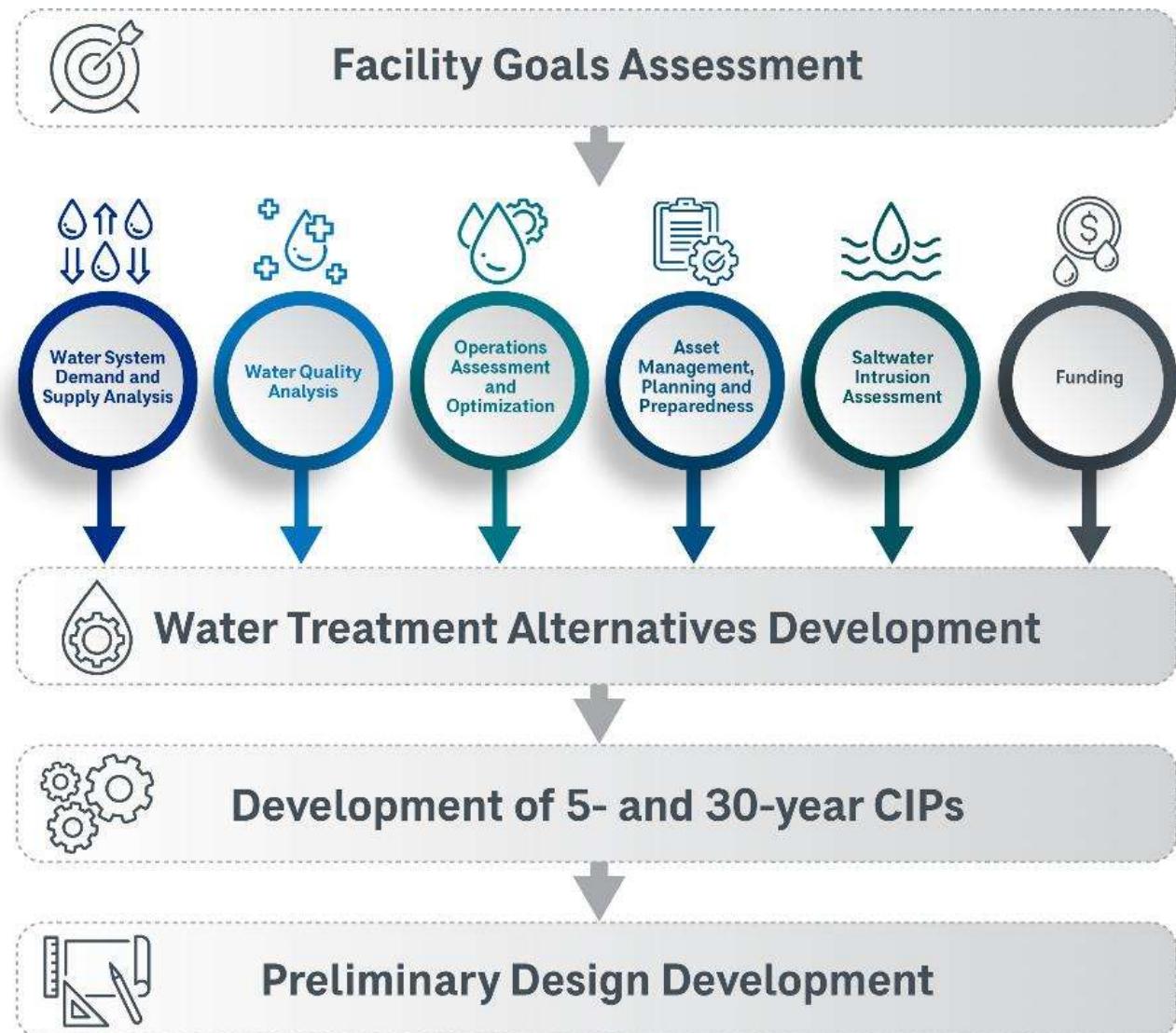
Join Virtually: <https://www.swbno.org/BoardMeetings>

E-Public comments will be accepted via <https://www.swbno.org/BoardMeetings>.
All e-public comments must be received at least 2 hours prior to the meeting. Comments
will be read verbatim into the record.

I. Roll Call

II. Presentation Items

- A.** Water Quality Master Plan Update – Kaitlin Tymrak, SWBNO Deputy General Superintendent and Chris Bergeron, Chief of Engineering
- B.** Drainage System Consolidation Update - David Cappel, PE, Director of Drainage Networks


III. Public Comment

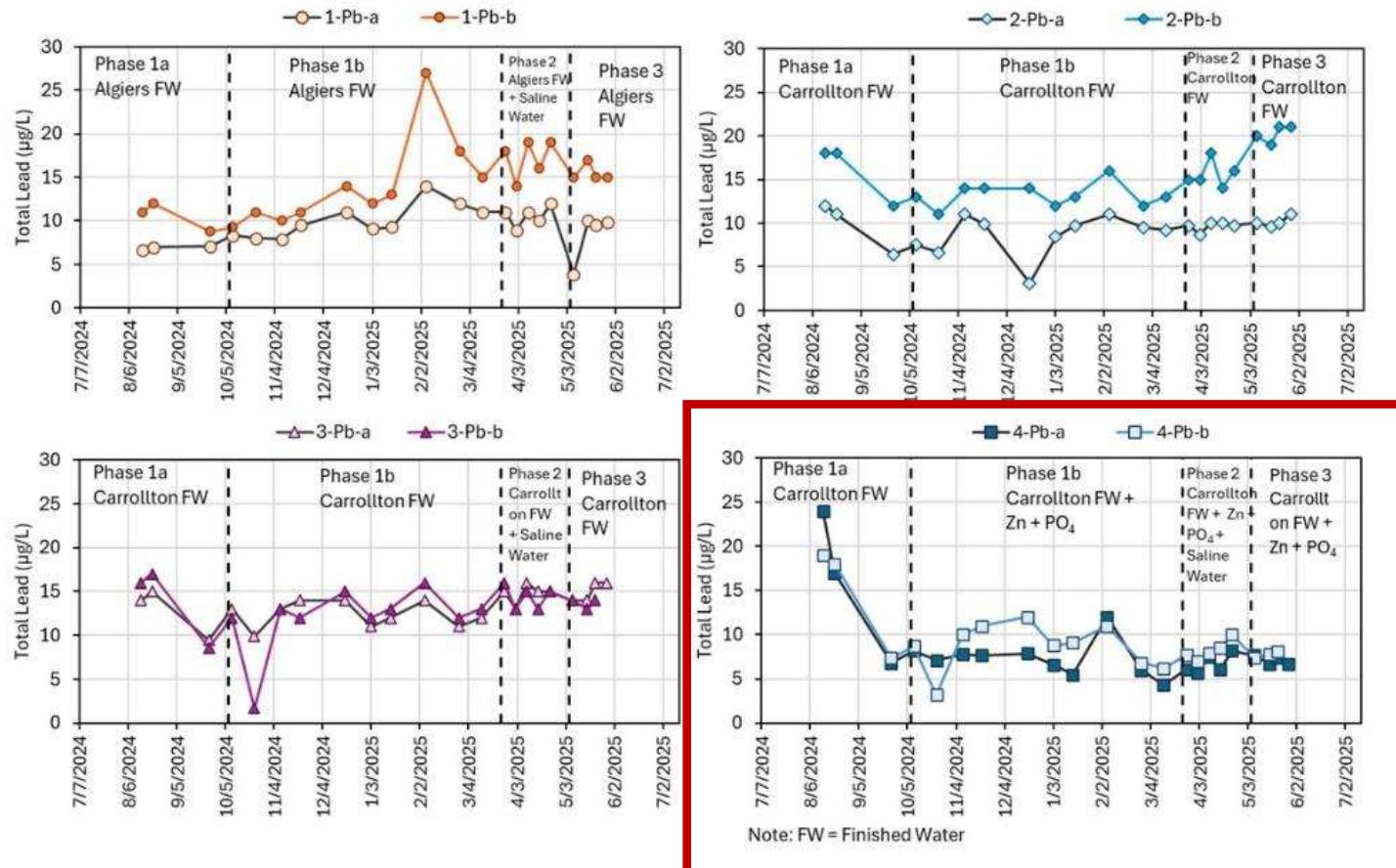
IV. Adjournment

Water Quality Master Plan 2026 Initiatives and Implementations

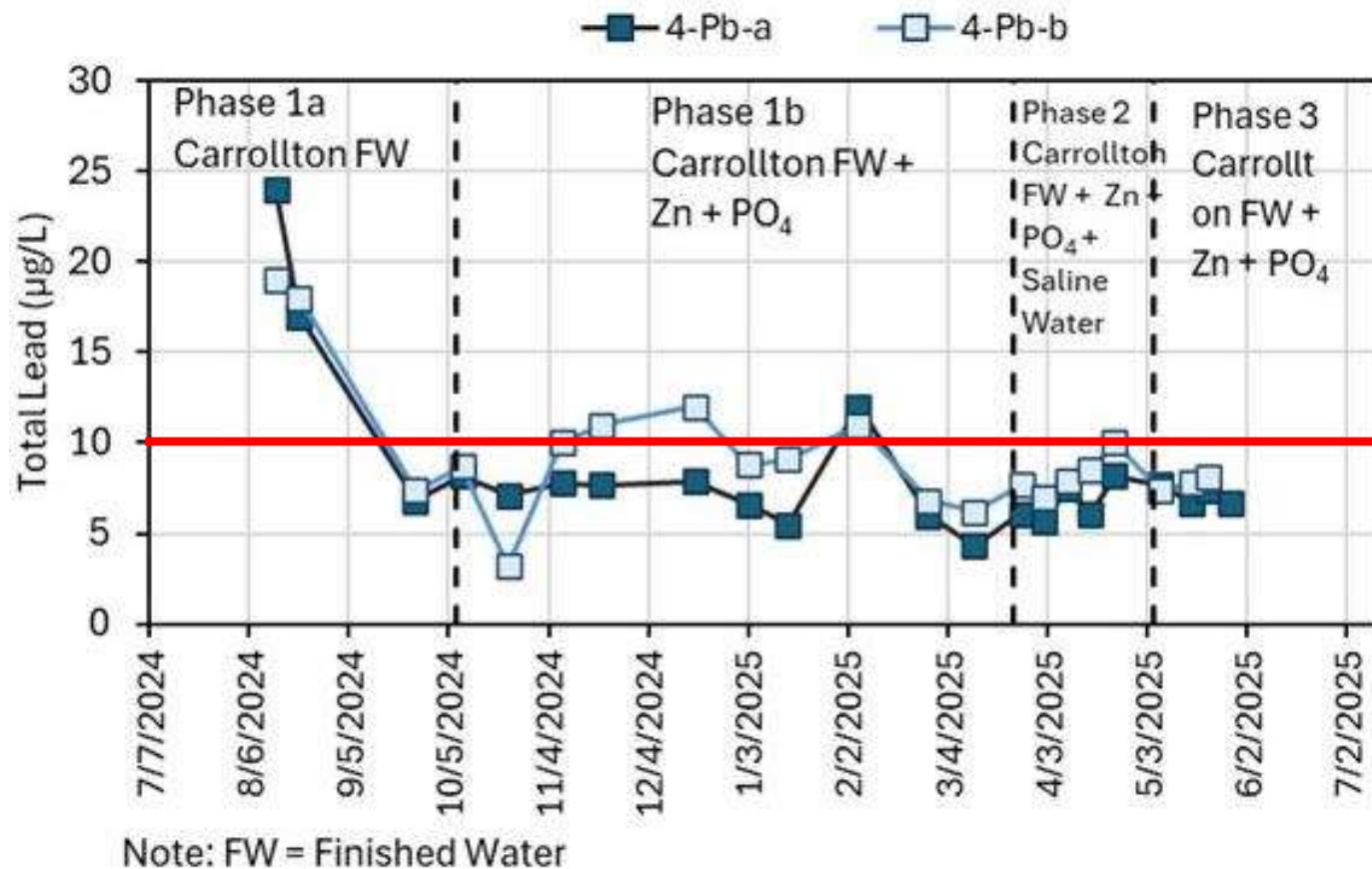
Water Quality Master Plan Key Tasks

Outcomes

- Identified several near-term operational improvements
 - Corrosion control optimization from pipe loop study
 - Coagulant chemical optimization
- Developed a 5-year capital projects list with critical projects needed to maintain current service while full-scale replacement and long-term funding plan is being developed
 - State capital outlay application submitted
- Developed basis of design for full-scale replacement and selected a preferred alternative
 - Road map to guide funding strategy and next level of design



Pipe Loops Study


- Set up 24 individual pipe-loops to study effects of increased chlorides on lead service pipes
- Tested different chemicals for corrosion control

Pipe Loops Study

Pipe Loops Study

Corrosion Control Optimization Pilot Project

Selected Chemical: Zinc Orthophosphate

- Adding zinc orthophosphate showed benefit of lead reduction in test loops by reducing lead levels by approximately 45%.
- Enhances existing corrosion control process to reduces risk of exceeding regulatory action level and ultimately reduces risk to consumers
- Proven approach, approved by EPA, that is used around the country

Expected O&M Cost Increases:

- Approximately \$115,000 yearly for Algiers
- Approximately \$2,200,000 yearly for Carrollton

Next Steps

- LDH approval for implementation in Algiers
- Public outreach to customers in advance

Corrosion Control Pilot Project - Public Outreach

Is it Safe in My Drinking Water?

Yes. Orthophosphate is approved for use by the FDA, EPA, and the National Sanitation Foundation (NSF). NSF is an independent international testing organization that certifies and writes standards for products, food, air, water and consumer goods in use. According to the EPA, the typical phosphate levels found in a liter of drinking water are about one hundred times lower than the phosphate levels found in the average American diet. For example, a person would have to drink 10 to 15 liters of water to equal the amount of phosphates in just one can of soda.

You should not see, taste, or smell any difference in your drinking water; however, if you have any concerns or observe any unusual conditions, please contact our Water Quality Hotline at [\(401\) 521-6303](tel:(401)521-6303).

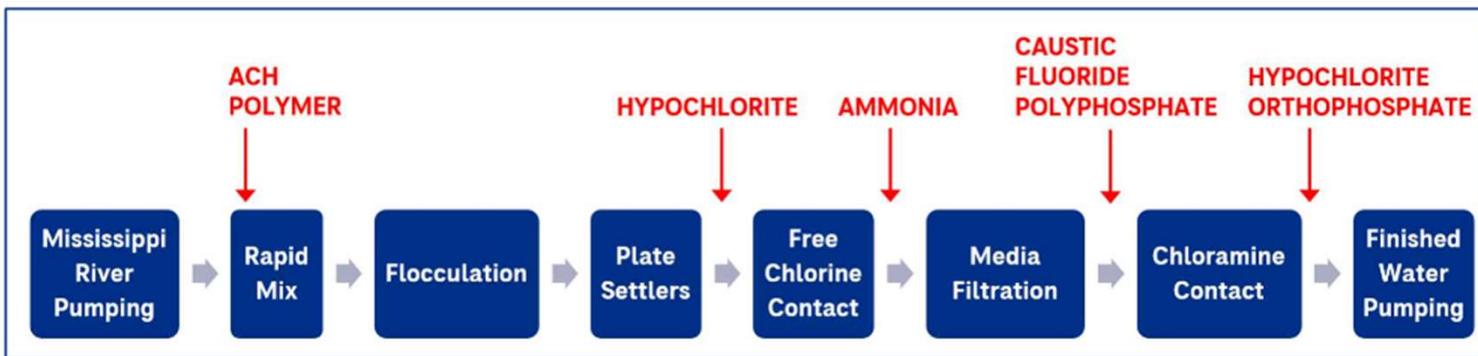
In April 2019, we began incorporating a food-grade additive known as **orthophosphate** into our treatment process to reduce lead levels in drinking water. Orthophosphate forms a protective barrier to the interior of a pipe and prevents it from corroding. Preventing corrosion reduces lead levels for all customers as Pittsburgh Water continues to remove old lead service lines from our drinking water system. Pittsburgh Water's lead levels are at historic lows and are in compliance with state and federal standards. To read more about orthophosphate, visit www.lead.pgh2o.com/orthophosphate.

A protective layer of **Orthophosphate** forms to prevent pipe corrosion.

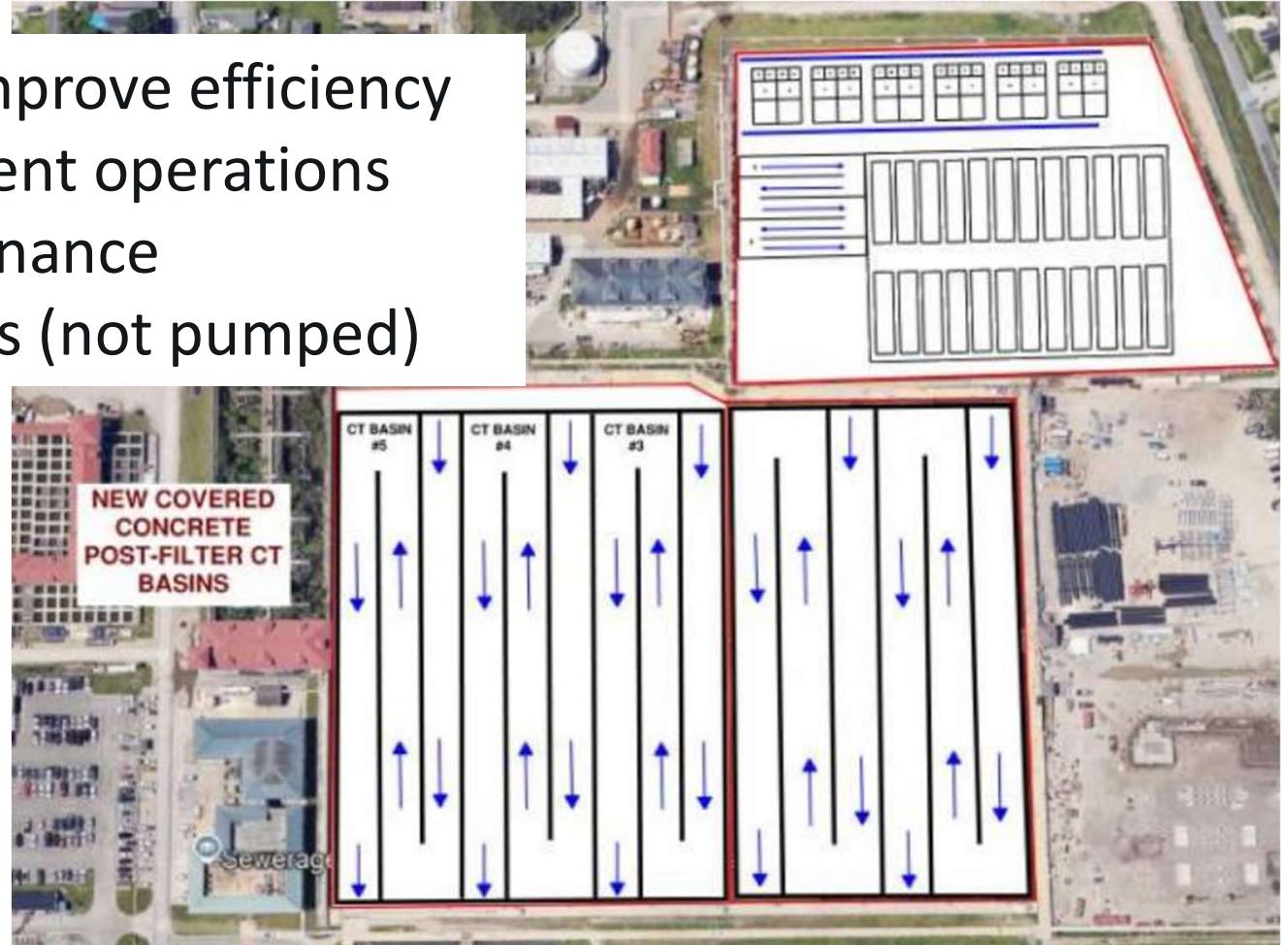
Lack of corrosion control allows lead to leach from pipes into water.

Development of 5 and 30-Year CIPs

- Short term (5-year) project list developed and utilized in 2026 Capital Budget
- 5 alternatives for full replacement of water treatment system were developed
 - Based around using existing footprint and existing intake structure infrastructure
 - Similar capacity to current facility, to allow for redundancy in treatment units
 - Consideration for new, yet proven technologies at each phase of the treatment process


Alternative Selection

- Staff used a formal scoring process for final selection
 - Constructability and timeliness
 - Capital cost
 - Treatment performance
 - Ease of operations
 - System reliability and maintenance
 - O&M costs
 - Future flexibility
- Due to cost and duration, a phased approach to replace treatment units is necessary to allow for continuity of operations


Alternative Selection

- Selected alternative:
 - Plate settlers for faster pretreatment
 - New dual-media filtration
 - Optimized chemicals
 - Chlorine/chloramine disinfection
- Initial phase for sedimentation/clarification may require reconfiguration of existing facilities at CWP.
- Goal for Design/Feasibility RFP in 2026.

Selected Alternative

- Significantly improve efficiency
- Similar to current operations
- Simple maintenance
- Passive process (not pumped)

2026 Implementations and Initiatives

- Receive LDH Approval for Zinc Orthophosphate
 - Start with Algiers and move to CWP
- Coagulation pilot test at CWP to improve coagulation process and reduce lime for pH control
 - ACH to replace Ferric Sulfate
- Begin RFP for Carrollton Water Treatment Plant Design/Feasibility
- Begin 5-Year CIP – State Capital Outlay application submitted for 2026 legislative session

Drainage Consolidation Status

David Cappel, P.E.

Xavier Chavez-Reyes, P.E.

Kyle Breaux, P.E.

Where this all started

- July 1992 – Minor Drainage Transfer
 - Responsibility of drainage mains under 36" diameter, manholes and catch basins transferred from SWB to DPW after Drainage Millage not renewed by Voters.
 - Millage has been on ballot many times since then, but is always voted down
- June 2024 – Governor signed Act 763:
 - Board shall be responsible for “all drainage operations in the City of New Orleans”
 - Effective as of January 1, 2025

What are the overall responsibilities?

Responsible for the maintenance of the entire Gravity Drainage System which consists of cleaning, assessing, and repairing the following Assets:

- **New Responsibilities:**
 - Over 1,840 miles of Drain Lines under 36" in diameter
 - 50,000 Drainage Manholes for pipes under 36"
 - 78,000 Catch Basins
- **Existing Responsibilities:**
 - 210 miles of Closed Canals (36" and above, and underground canals) (unfunded)
 - 65 miles of Open Canals (unfunded)
 - 11 Underpass Drainage Stations (Managed by SWB Drainage Ops)
 - 14 Main Pump Stations (Managed by SWB Drainage Ops)

DPW Transfer Engagement

- Equipment: Received-Early March - 9 flush trucks with 5 functional:
 - Four Vac-cons, 2018-2020 models, are in fair condition and required maintenance and tool furnishing
 - 2024 Vactor is in good condition and required routine maintenance and tool furnishing
- Inventory received:
 - Catch basin assemblies, drainage manhole tops, inlet grates – currently in process of collecting with addition of new flatbed truck with heavy-lift crane.
- Lessons learned:
 - Contractor paid by linear foot, clean or not clean pipe; SWB changed to “by-the-ton”
 - Paid full time construction mgmt.; changed to spot checks as after cleaning photos are required for pay-savings of (+/-)
- Maintenance and Repair schedules:
 - None received – we were referred to 311 backlog

2025 Drainage Stats

Storm Drain Cleaning Progress

2024 Total
Catch Basins Cleaned 5,913
Drainage Lines Cleaned 147.1 mi
Debris Removed 4,080,000 lbs

2025 Contractor (YTD)
Catch Basins Cleaned * 5,001
Drainage Lines Cleaned * 66.6 mi
Debris Removed 9,959,440 lbs

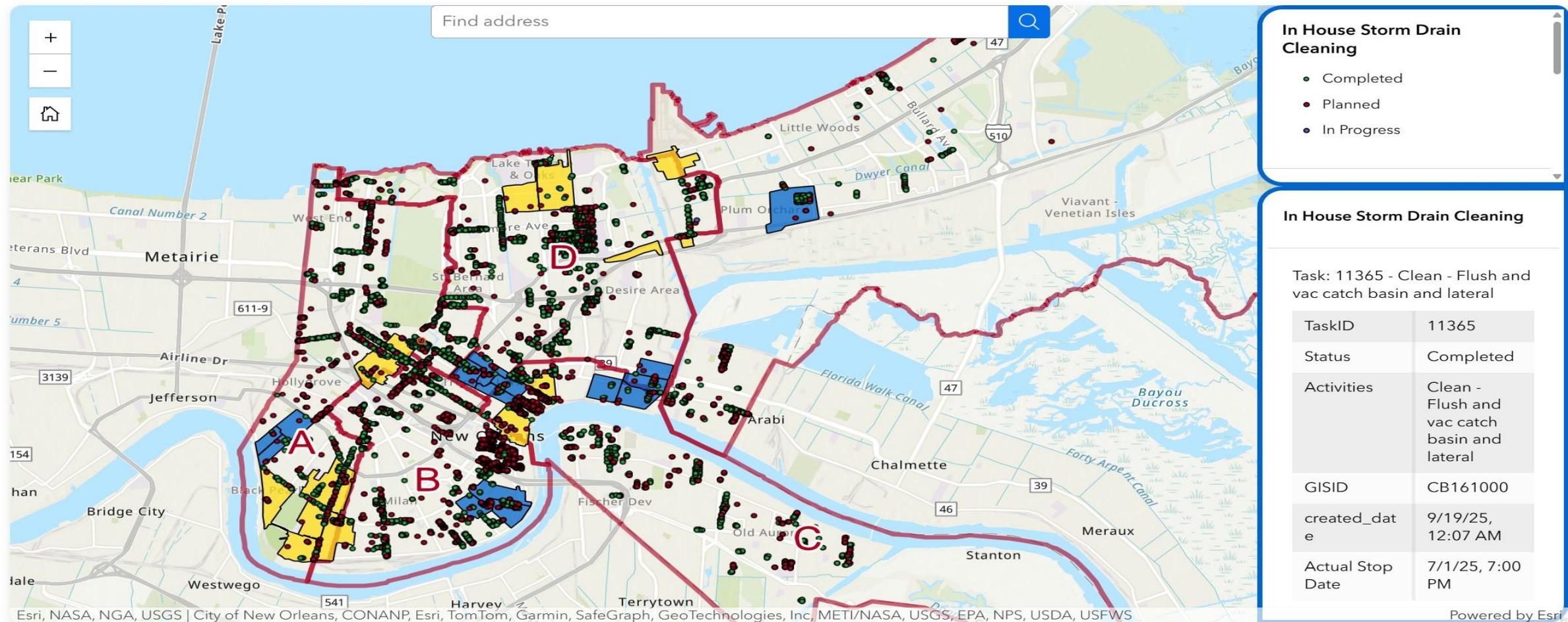
2025 In-House (YTD)
Catch Basins Cleaned 4,043
Drainage Lines Cleaned 27.1 mi
Debris Removed 643,780 lbs

2025 Total (YTD)
Catch Basins Cleaned 9,044
Drainage Lines Cleaned 93.7 mi
Debris Removed 10,603,220 lbs

* Includes Pre-Assessed Clean Catch Basins and Drainage Lines **Last Updated:** December 31, 2025

Storm Drain Cleaning Dashboard Visit: <https://www.swbno.org/Stormwater/StormDrainCleaning>

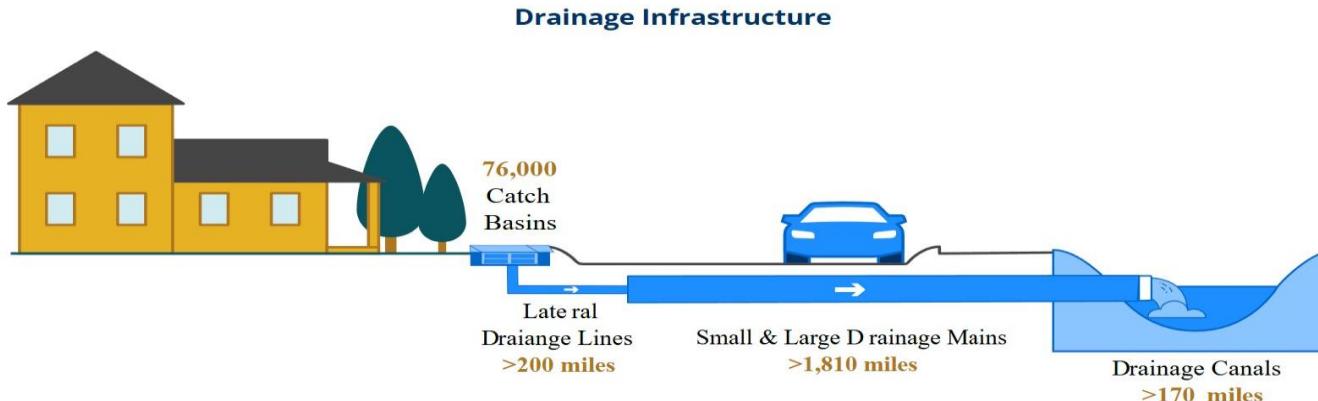
Points Regarding Stats


- Same criteria of deployment as DPW – High 311 concentrations and flood prone areas
- SWB targeting mostly catch basins to reduce 311 backlog; currently LIFO and council issues
- Pre-assessment - Targeting dirtiest of pipes reduces linear footage per day, from 600ft/day to 300ft/day, but removing 2X the material.
- 2024 to 2025 – More than double the debris removed for approximately the same amount of funding. 12% Catch basins and 6% drain mainlines cleaned.
- Neighborhoods cleaned – Lower Garden, Carrollton and Downtown CBD.
- Contractor work started on June 23rd and placed on-hold November 26th.
- In-house collection of inspection and assessment data using CNO Asset Management Software-Cartegraph. Contractor given work order via ESRI GIS, same as DPW 2024.
- Prior to having Department Staff, Networks crews were used for Vactrucks

Public Facing Dashboard – SWB Website

SEARCH FOR CLEANING UPDATES

View recent storm drain cleaning activity in your area. The map below shows locations of catch basins, lateral lines, and drainage mains that have been cleaned or are scheduled for cleaning.



Dashboard Illustration

UNDERSTANDING OUR DRAINAGE SYSTEM

New Orleans' drainage infrastructure is a complex network of interconnected components that work together to protect the city from flooding.

Catch Basins (76,000+)

Street-level structures that collect stormwater runoff from roads and sidewalks. These are the grated inlets you see along curbs throughout the city. They capture water and debris before it enters the drainage system.

Lateral Drainage Lines (200+ miles)

Smaller underground pipes that connect catch basins to the larger drainage mains. These lines transport water from individual street blocks to the main drainage network.

Drainage Mains (1,810+ miles)

Large underground pipes that form the backbone of the drainage system. They collect water from lateral lines and transport it to pumping stations. These include both small mains (typically 12-36 inches in diameter) and large mains (36+ inches).

Drainage Canals (170+ miles)

Open channels that receive water pumped from drainage mains. These canals carry water away from populated areas to Lake Pontchartrain or other receiving bodies of water. They serve as both conveyance and temporary storage during heavy rain events.

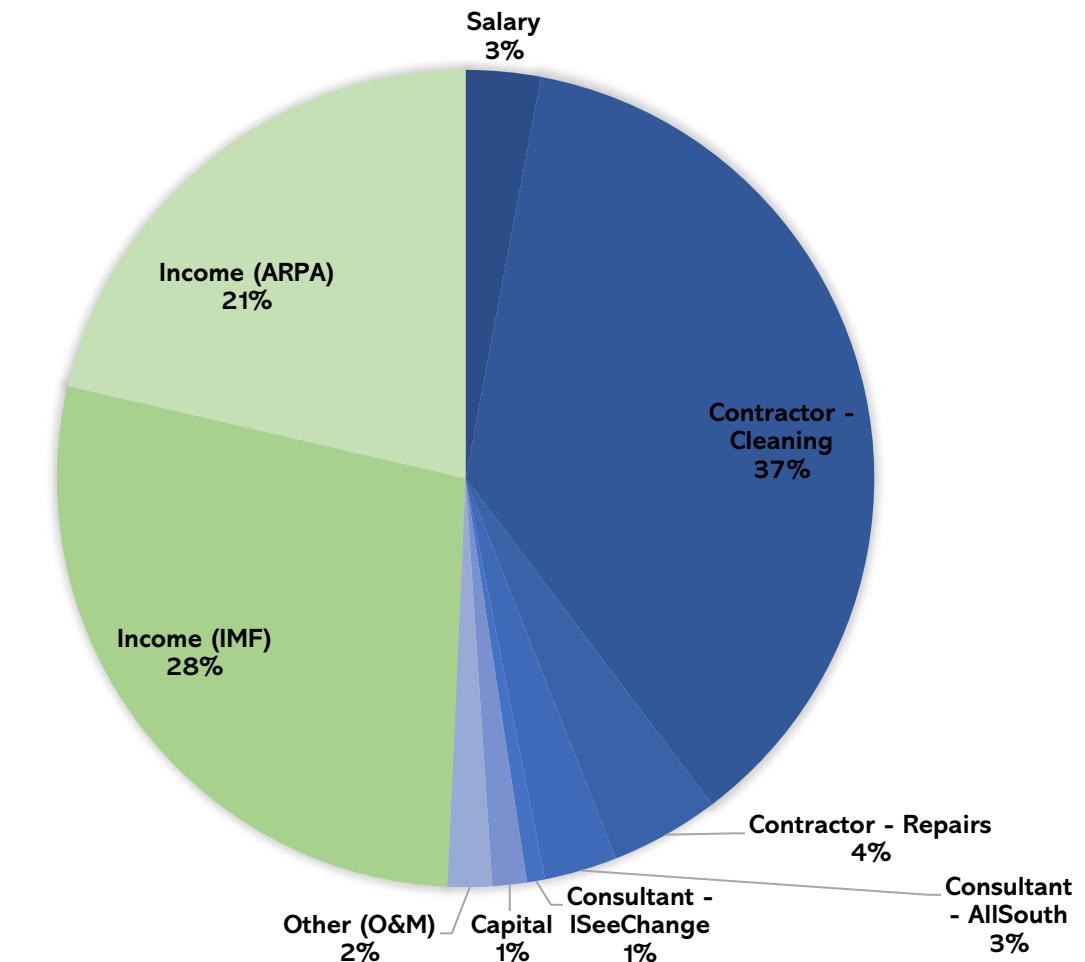
Debris

Material removed from the drainage system during cleaning operations. This includes leaves, sediment, trash, and other objects that can clog pipes and reduce drainage capacity. Regular removal of debris is essential to maintaining system performance and preventing flooding.

System Maintenance

SWBNO maintains this infrastructure through a combination of in-house crews and contracted services. Regular cleaning and inspection helps prevent blockages, identifies maintenance needs, and ensures the system can handle New Orleans' heavy rainfall events.

2025 Drainage Maintenance Funding


2025 Budget Breakdown	Original Estimate	Revised May 14, 2025	Received from CNO	Status (12/31/2025)
One Time - Electronic Traffic Enforcement Devices - 2024	\$1,834,084.81			
Electronic Traffic Enforcement Devices - 2025	\$3,386,002.73	\$2,339,000.00	\$0.00	Sept to Sept Escrow -Not Rec'd w/ CNO Budget Crisis
Special Fair Share Allocation - Annual City allocation to Minor Drainage	\$5,000,000.00	\$0.00	\$0.00	CNO rejected
25% Former DPW Share of IMF	\$5,000,000.00	\$6,250,000.00	\$4,850,088.00	Nov & Dec not rec'd
One Time - CNO ARPA	\$3,713,220.14	\$3,713,220.14	\$3,713,220.14	Received
Total	\$18,933,307.68	\$12,302,220.14	\$8,563,308.14	

2025 IMF Recurring Funds	Month Received
January	\$626,465.00 April
February	\$134,111.00 April
March	\$914,028.00 June
April	\$999,402.00 June
May	\$459,646.00 August
June	\$432,423.00 September
July	\$298,541.00 October
August	\$378,560.00 October
September	\$285,189.00 December
October	\$321,723.00 December
November	\$0.00
December	\$0.00
TOTAL:	\$4,850,088.00

2025 Drainage Maintenance Expenditures

Category	2025 Cashflow
Salary	\$ 513,632.52
Contractor - Cleaning	\$ 6,381,601.99
Contractor - Repairs	\$ 750,000.00
Consultant - AllSouth	\$ 500,000.00
Consultant - ISeeChange	\$ 123,900.00
Capital	\$ 236,386.00
Other (O&M)	\$ 304,200.00
Income (IMF)	\$ 4,850,088.00
Income (ARPA)	\$ 3,713,220.01
Expended	\$ 8,809,720.51
Income	\$ 8,563,308.01
Available Funds	\$ (246,412.50)

Funding Scenarios

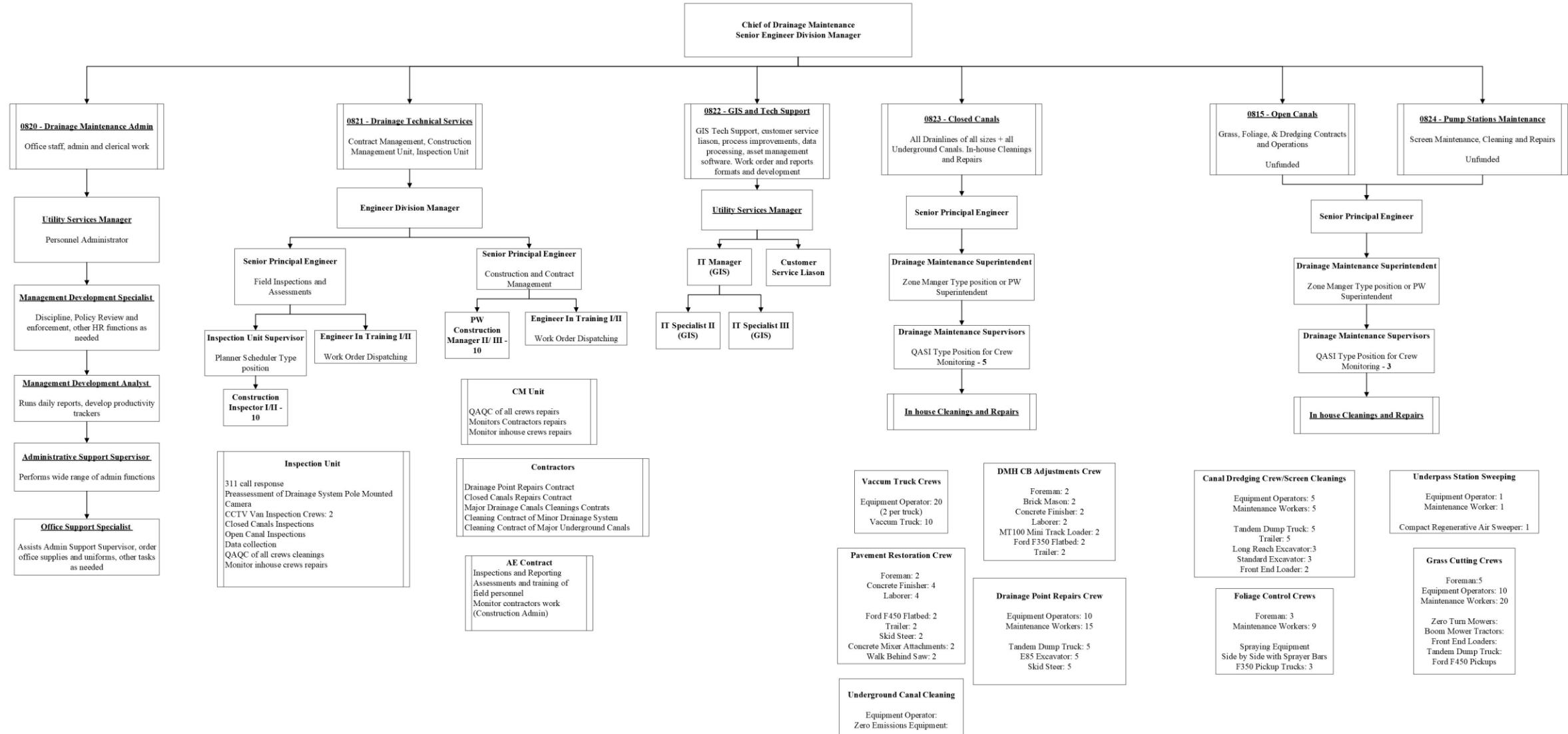
ITEM	\$8M	\$10M	\$15M	\$20M	\$25M	\$30M
Contractor Cleaning (Assume \$1M worth of contracting equals 1% cleaned)	\$6,000,000	\$8,000,000	\$12,000,000	\$16,000,000	\$17,500,000	\$20,000,000
In-house Cleaning (does not include OT Work - 1% per Truck on Year 1)	1%	2%	2%	3%	5%	6%
In-house + Contracting (%)	7%	10%	14%	19%	23%	26%
Point Repairs	\$750,000	\$500,000	\$590,000	\$900,000	\$2,300,000	\$4,000,000
Professional Services	\$500,000	\$0	\$0	\$390,000	\$500,000	\$500,000
Drainage and Maintenance Facility (Design Phase)	\$0	\$0	\$0	\$0	\$250,000	\$250,000
O&M Costs (Tools Purchase, fuel, fleet maintenance, etc)	\$500,000	\$500,000	\$600,000	\$700,000	\$800,000	\$1,420,000
Equipment Costs (transition from contracting to in-house cleaning - 5 year cycle)	\$0	\$0	\$610,000	\$610,000	\$1,830,000	\$1,830,000
Vac Truck Count	0	0	1	1	3	3
Total Vactrucks	5	5	5	5	6	7
Labor Costs (All types; includes OT)	\$600,000	\$1,000,000	\$1,200,000	\$1,400,000	\$1,820,000	\$2,000,000
Labor Total	\$8,350,000	\$10,000,000	\$15,000,000	\$20,000,000	\$25,000,000	\$30,000,000

Drainage Repairs

- 2025: Provided \$750,000.00 for Point Repairs
 - This endeavor changed from providing repairs of box canal connections to safety issues; safety issues will always hold a higher LOS priority than repairs
 - Contracted with Drennan Construction utilizing the Sewer Repairs Contract
 - Completed eleven(11) drain mainline repairs
 - Completed twenty-nine(29) manhole/catch basin repairs
 - General Note: Repairing of pipes will reduce the frequency of cleaning as self cleaning of pipes is partly determined by the variable of water velocity. As water velocity slows, suspended solids settle in the pipe.

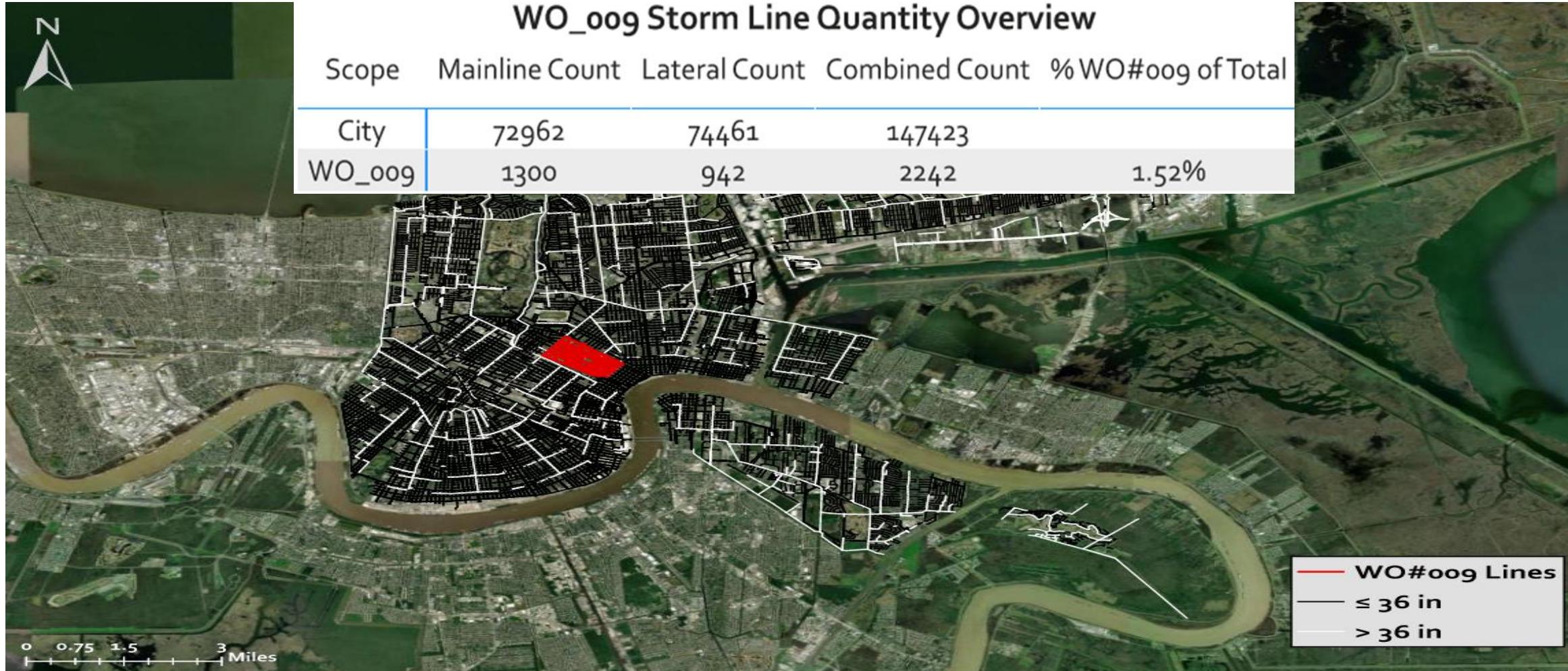
Drainage Maintenance Department Training

- Vacuum Truck Operator Training:
 - Nezat Consulting and Training: 20 Online Training slots acquired
 - Establish minimum acceptable productivity
 - Cleaning Goal: 2% of the system per year per truck
 - Repairs of catch basins – presently gearing up with new Flatbed Crane Truck
- Flatbed Operator Training
 - Currently replacing CB and DMH Covers
 - Next month start masonry work to repair CB and DMH structures
- Sweeper/Vacuum Truck (to be purchased - \$400k)
 - This unit will be used to service 15k to 20k of CB's per year


Future Expectations

- Funding independent – drainage fee for small and large diameter systems
- Aim for Industry Standard of 20% of assets cleaned yearly
- Develop KPI's with new Asset Management System
- Citizen responsibility of cleaning 1.5ft past curb line and elimination of grass debris from entering Drainage System.
- Create a repair division within Department
- Clean and repair Major Drainage System
- Rebid of Contractor Contract if WWTP is utilized for spoil dumping
- Identify green infrastructure projects and downstream limitations

Big Picture Goals



0820 Drainage Maintenance Division Organizational Chart - Proposed Draft

Treme Case Study - ASCE

WO#009 DEMONSTRATION AREA

Treme Rehab Overview

Rehab Method Totals by Priority Level

Priority Level Rehab Method	1. Critical		2. High		3. Moderate		4. Low		Total	
	Pipe Count	Total Length (ft)	Pipe Count	Total Length (ft)	Pipe Count	Total Length (ft)	Pipe Count	Total Length (ft)	Pipe Count	Total Length (ft)
Cured-in-Place Pipe	3	518	24	2694	31	1856	44	3399	102	8467
Open Cut Replacement	17	752	11	196	10	353	3	30	41	1331
Other	1	3	2	21	4	592	1	29	8	646
Point Repair	49	7057	35	2845	27	1105	74	665	185	11673
Total	70	8329	72	5757	72	3907	122	4123	336	22116

WO #009 Damage Type and Priority

Damaged Pipe by Size & Priority Level

Priority Level	08	10	12	15	18	21	24	30	Total
1. Critical	23	11	12	7	4	13			70
2. High	28	13	6	11	7	6	1		72
3. Moderate	35	10	6	10	4	7			72
4. Low	1	80	20	5	6	3	7		122
Total	1	166	54	29	34	18	33	1	336

15% of WO #009 is damaged.

6% of WO #009 has high or critical damage.

42% of all damaged pipe falls within high or critical priority.

Damage Type by Pipe Size

Damage Type	08	10	12	15	18	21	24	30	Total
Blockage	2	3	1	1	1				8
Broken Pipe	21	6	6	4	1	2			40
Collapsed Pipe	14	5	2	2	1	2			26
Cracks/Fractures	75	13	7	10	6	7			118
Crossbore	4		3	2	2	1			12
Flagged for Post Clean Investigation		1							1
Infiltration		1		1			3		5
Offset Joints	28	9	2	3	1	2			45
Other	1	3	1		2	3	3		13
Partial Collapse	10	10	5	4	1	11	1		42
Roots	4	4	2	3	2	1			16
Sag	3	3		3		1			10
Total	1	166	54	29	34	18	33	1	336

WO #009 Critical and High Rehab Cost Estimate

Row Labels	Total Sum of Total		Total Count of Line ID *
<input checked="" type="checkbox"/> Critical	\$ 1,940,504.10		70
Cured-in-Place Pipe	\$ 139,541.54		3
Open Cut Replacement	\$ 206,305.23		17
Other	\$ 1,600.00		1
Point Repair	\$ 1,593,057.33		49
<input checked="" type="checkbox"/> High	\$ 1,735,599.18		72
Cured-in-Place Pipe	\$ 863,918.43		24
Open Cut Replacement	\$ 46,873.11		11
Other	\$ 3,801.18		2
Point Repair	\$ 821,006.46		35
Grand Total	\$ 3,676,103.28		142

*Segments recommended for Point Repairs were also recommended for CIPP if material type was clay or non-reinforced concrete

*CCTV and Cleaning cost is included if CCTV is recommended to confirm rehab recommendation

*Point repairs on main needed to open cut laterals are not included

NOTE: If applied to total drainage system this would be approximately \$240M in repairs.

Questions?